International Symposium on Simplicity, Symmetry and Beauty of Atomic Nuclei, in honor of Professor Akito Arima's 88 year-old birthday (米寿) Sep. 26-28, 2018, Shanghai, China

F

简単

Production cross sections for exotic nuclei with multinucleon transfer reactions

Feng-Shou Zhang

College of Nuclear Science and Technology Beijing Normal University

1996 in IMP, Lanzhou

This work is dedicated to Prof. Akito Arima on the occasion of his 88 year-old birthday (米寿)

Front. Phys. 13(6), 132113 (2018) https://doi.org/10.1007/s11467-018-0843-6

Review Article

Production cross sections for exotic nuclei with multinucleon transfer reactions

Feng-Shou Zhang^{1,2,3,†}, Cheng Li^{1,2}, Long Zhu⁴, Peiwei Wen⁵

¹The Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China ²Beijing Radiation Center, Beijing 100875, China ³Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China ⁴Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China ⁵China Institute of Atomic Energy, Beijing 102413, China Corresponding author. E-mail: [†]fszhang@bnu.edu.cn Received July 24, 2018; accepted August 10, 2018

The main progresses in the multinucleon transfer reactions at energies close to the Coulomb barrier are reviewed. After a short presentation of the experimental progress and theoretical progress, the predicted production cross sections for unknown neutron-rich heavy nuclei and the trans-uranium nuclei are presented.

OUTLINE

- 1. Introduction
- 2. Models for calculation of production cross sections of exotic nuclei(1) The Improved Quantum Molecular
 - **Dynamics** Model
 - (2) A combination of the Grazing Model and the Dinuclear System (DNS) Model
- 3. RNB induced MNT
- 4. Summary

Top 125 science questions Science 1 July 2005 What Don't We Know?

scientific puzzles that are driving basic scientific research.

editors and writers to suggest questions that point to critical knowledge gaps. The ground rules: Scientists Contents >> NEWS

- 76 In Praise of Hard Questions
- 78 What Is the Universe Made Of?
- What Is the Biological Basis of 79 Consciousness?
- 80 Why Do Humans Have So Few Genes?
- 81 To What Extent Are Genetic Variation and Personal Health Linked?
- 82 Can the Laws of Physics Be Unified?
- 83 How Much Can Human Life Span Be Extended?
- 84 What Controls Organ **Regeneration?**
- 85 How Can a Skin Cell Become a Nerve Cell?
- How Does a Single Somatic Cell Become a Whole Plant?
- How Does Earth's Interior Worl
- Are We Alone in the Universe
- How and Where Did Life on Earth Arise?
- 90 What Determines Species Diversity?
 - What Genetic Changes Made **Us Uniquely Human?**

- 92 How Are Memories Stored and Retrieved?
- 93 How Did Cooperative Behavior Evolve?
- 94 How Will Big Pictures Emerge From a Sea of Biological Data?
- 95 How Far Can We Push Chemical Self-Assembly?

Are there stable

elements?

high-atomic-number

A superheavy element

with 184 neutrons

should be relatively

stable, if physicists

and 114 protons

can create it.

- s sat down to select those big questions, we quickly realized that edge research that lies behind the responses we ting number for Science's 125th anniversary.
 - tot a survey of the big societal challenges that e might achieve. Think of it instead as a survey that scientists themselves are asking. As Tom

tScience, we tend to get excited about new discoveries that lift the veil a little on how things work, from cells to the universe. That puts our focus firmly on what has been added to our stock of knowledge. For this anniversary issue, we decided to shift our frame of reference, to look instead at what we don't know: the

We began by asking Science's Senior Editorial Board, our Board of Reviewing Editors, and our own

prtunities to be exploited." sed on several criteria: how fundamental they vill impact other scientific disciplines. Some sition of the universe, for example. Others we impact-whether an effective HIV vaccine is

Is superfluidity possible in a solid? If so, how?

Despite hints in solid helium, nobody is sure whether a crystalline material can flow without resistance. If new types of experiments show that such outlandish behavior is possible, theorists would have to explain how.

What is the structure of water?

hese suggestions and turn them into a survey of the big questions

Researchers continue to tussle over how many bonds each H₂O molecule makes with its nearest neighbors.

What is the nature of the glassy state

Molecules in a glass are arranged much like those in liquids but are more tightly packed. Where and why does liquid end and glass begin?

2016 പ് ч

Special Section

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

IUPAC 2016-06-08

http://iupac.org/iupac-is-naming-the-four-new-elements-nihonium-moscovium -tennessine-and-oganesson/

IUPAC is naming the four new elements **nihonium**, **moscovium**, **tennessine**, and **oganesson**

The 7th period of the periodic table of elements is complete.

10	11	12	aluminium 26.98	silicon [28.08, 28.09]	phosphorus 30.97	sulfur [32.05. 32.08]	chiorine [35.44, 35.46]	argon 39.95
28	29	30	31	32	33	34	35	36
Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
nickel	copper	zinc	gailium	germanium	arsenic	selenium	bromine	krypton
46	47	48	49	72.63	51	78.96(3) 52	53	54
Pd	Ag	Cd	In	Sn	Sb	Те		Xe
palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
108.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
78	79	80	81	82	83	84	85	86
Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
195.1	197.0	200.6	[204.3, 204.4]	207.2	209.0			
110	111	112	113	114	115	116	117	118
Ds darmstadtium	Rg roentgenium	Cn	Nh	FI	Мс	Lv	"Ts.,	,Og
	10 28 Ni sickel 53.69 46 Pd palladium 108.4 78 Pt platinum 193.1 110 DS darmstadium	10 11 28 29 Ni Cu nickel copper 53.69 46 46 47 Pd Ag pailadium silver 108.4 107.9 78 79 Pt Au piatinum gold 195.1 197.0 110 111 Ds Rg darmstadtium rcentgenium	10 11 12 28 29 30 Ni Cu Zn nickel 255 25 46 47 48 Pd Ag Cd pailadium 107.9 112.4 78 79 80 Pt Au Hg piatinum gold mercury 195.1 197.0 200.8 110 111 112 Ds Rg Cn darmstadtium rcentgenium copernicium	10 11 12 aluminium 26.98 28 29 30 31 Ni nickel Cu copper Zn zinc 63.55 Ga gailium 69.72 46 47 48 49 Pd pailadium 108.4 Ag silver Cd cadmium 112.4 In indium 114.8 78 79 80 81 Pt platinum 195.1 Au 197.0 Hg mercury 200.8 Ti thalium (204.3, 204.4) 110 111 112 113 Ds darmstadtium Rg roentgenium Cn copernicium Nh	10 11 12 aluminium 26.98 silicon (28.08, 28.09) 28 29 30 31 32 Ni nickel Cu copper Zn 23.55 Ga gailium es.38(2) Ga gailium es.72 Ga germanium 72.63 46 47 48 49 50 Pd pailadium 108.4 Ag 107.9 Cd cadmium 112.4 In indium 114.8 Sn 118.7 78 79 80 81 82 Pt platinum 195.1 Au 197.0 Hg 200.8 Ti pot 3, 204.4 Pb lead 207.2 110 111 112 113 114 Ds darmstadtium Rg roentgenium Cn copernicium Nh Fl ferovium	10 11 12 aluminium 26.98 silicon (28.08, 28.09) phosphorus 30.97 28 29 30 31 32 33 Ni nickel Cu copper Zn 23.55 Ga 25.56 Ga gailium 65.38(2) Ga gailium 69.72 Ga germanium 72.63 As arsenic 74.92 46 47 48 49 50 51 Pd pailadium 105.4 Ag 107.9 Cd cadmium 112.4 Initiation 114.8 Sn 118.7 Sb antimony 118.7 78 79 80 81 82 83 Pt platinum 195.1 Au 197.0 Hg 200.8 Ti 102.113 Pb 114 Bi 115 110 111 112 113 114 115 Ds darmstadtium Rg roentgenium Co copernicium Nh Fl ferovium Mc 1	10 11 12 aluminium 26.98 silicon (28.08, 28.09] phosphous 30.97 suffur (30.97, 32.08) 28 29 30 31 32 33 34 Ni nickel Cu copper Zn (33.55 Ga (53.56) Ga (53.56) Ga (53.56) Ga (53.56) Ga (53.56) Ga (55.38(2)) Ga (59.72) Ga (59.72) Ga (74.92) Se (51.06) Se (51.06)	10 11 12 aluminium 26.98 silion (26.06, 28.09) phosphorus 30.97 suffur (32.05, 32.08) chlorine (35.44, 35.40) 28 29 30 31 32 33 34 35 Ni sa.80 Cu copper 33.85 Zn (83.86) Ga (83.86) Ga (74.92) Ga (74.9

A five-month public review is now set, expiring 8 November 2016, prior to the formal approval by the IUPAC Council.

295, 296<mark>Og</mark>

$^{48}Ca + ^{249}Cf (51\%) + ^{250}Cf (13\%) + ^{251}Cf (36\%)$ $\rightarrow ^{294,295,296}Og + xn$

Search for the heaviest atomic nuclei among the products from reactions of mixed-Cf with a ⁴⁸Ca beam

N. T. Brewer^{1,2,3,†}, V. K. Utyonkov⁴, K. P. Rykaczewski², Yu. Ts. Oganessian⁴, F. Sh. Abdullin⁴, R. A. Boll², D. J. Dean², S. N. Dmitriev⁴, J. G. Ezold², L. K. Felker², R. K. Grzywacz^{2,3}, M. G. Itkis⁴, N. D. Kovrizhnykh⁴, D. C. McInturff², K. Miernik^{1,5}, G. D. Owen², A. N. Polyakov⁴, A. G. Popeko⁴, J. B. Roberto², A. V. Sabel'nikov⁴, R. N. Sagaidak⁴, I. V. Shirokovsky⁴, M. V. Shumeiko⁴, N. J. Sims², E. H. Smith², V. G. Subbotin⁴, A. M. Sukhov⁴, A. I. Svirikhin⁴, Yu. S. Tsyganov⁴, S. M. Van Cleve¹, A. A. Voinov⁴, G. K. Vostokin⁴, C. S. White², J. H. Hamilton⁶, M. A. Stoyer⁷ JINPA, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ² Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA ³ Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA ⁴ Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation ⁵ Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland ⁶ Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA ⁷ Lawrence Livermore National Laboratory, Livermore, California 94551, USA [†] brewernt@ornl.gov (Dated: August 1, 2018)

The search for new decay chains of oganesson isotopes is presented. The experiment utilized the Dubna Gas Filled Recoil Separator and a highly segmented recoil-decay detection system. The signals from all detectors were analyzed in parallel by digital and analog data acquisition systems. For the first time, a target of mixed californium $(51\%^{249}Cf, 13\%^{250}Cf \text{ and } 36\%^{251}Cf)$ recovered from decayed ²⁵²Cf sources was produced and irradiated with an intense ⁴⁸Ca beam. The observation of a new decay chain of ²⁹⁴Og is reported. The prospects for reaching new isotopes ^{295,296}Og are discussed.

Radiochim. Acta **99**, 429–439 (2011) / **DOI** 10.1524/ract.2011.1860 © by Oldenbourg Wissenschaftsverlag, München

Synthesis of the heaviest elements in ⁴⁸Ca-induced reactions

By Yu. Oganessian*

Fig. 5. Chart of the heaviest nuclides with $Z \ge 104$ and $N \ge 151$. The symbols are given in the right lower corner of the figure. To avoid making the figure too complicated, the squares contain the half-lives (without errors) only. For the nuclei synthesized in cold fusion reactions the values of $T_{1/2}$ are taken from the compilation of the published data; for the products of the reaction Act. $+^{48}$ Ca – the data are from Table 1.

The Discovery of Isotopes: A Complete Compilation Michael Thoennessen, Springer, 2016

production mechanisms to discover new nuclides in the different regions are indicated by arrows.

Up to the end of 2017, 3252 nuclides have been found。 Natural nuclides: 288 (Stable: 254, unstable: 34), the others are man made radioactive isotopes.

New isotopes produced in ²³⁸U+⁹Be at 1GeV/A J. Kurcewicz et al. PLB 717 (2012) 371-375

Isotope		σ (nb)	Isotope	σ (nb)	Isotope	σ (nb)	Isotope	σ (nb)
¹⁵⁷ Nd*		980(40)	¹⁶⁸ Gd	78(5)	¹⁷⁶ Er	68(5)	¹⁸⁸ Lu	0.010(3)
¹⁵⁸ Nd*		201(11)	¹⁶⁹ Gd	10.6(15)	¹⁷⁷ Er	18(2)	¹⁹⁰ Нf* 🖵	0.027(13)
¹⁵⁹ Nd		39(4)	¹⁷⁰ Gd	2.6(8)	¹⁷⁸ Er	5.5(9)	¹⁹³ Ta	0.017(5)
¹⁶⁰ Nd	_	9.5(22)	¹⁶⁹ Tb	751(28)	¹⁷⁸ Tm*	24(3)	¹⁹⁴ Ta •	0.0037(19)
¹⁶¹ Nd	<u> </u>	3.0(17)	¹⁷⁰ Tb	99(6)	¹⁷⁹ Tm	1.21(18)	¹⁹⁵ ₩* +	0.049(1)
¹⁶⁰ Pm	0	518(36)	¹⁷¹ Tb	14(2)	¹⁸⁰ Tm	4.5(9)	¹⁹⁶ W 0	0.018(4)
¹⁶¹ Pm		161(9)	¹⁷² Tb	1.0(4)	¹⁸¹ Tm	0.6(3)	¹⁹⁷ W	0.0034(17)
¹⁶² Pm		25(3)	¹⁷¹ Dy	441(18)	¹⁸¹ Yb*	2.3(3)	¹⁹⁸ Re*	0.028(7)
¹⁶³ Pm		4.5(15)	¹⁷² Dy	121(7)	¹⁸² Yb*	0.45(10)	¹⁹⁹ Re	0.0076(27)
¹⁶³ Sm		134(11)	¹⁷³ Dy	18(2)	¹⁸³ Yb	0.21(5)	²⁰² Os	0.0044(20)
¹⁶⁴ Sm		42(4)	¹⁷⁴ Dy	1.9(6)	¹⁸⁴ Yb	0.028(9)	²⁰³ Os	0.0025(18)
¹⁶⁵ Sm		7.8(16)	¹⁷³ Ho	341(15)	¹⁸⁵ Yb	0.007(3)	²⁰⁵ Ir	0.003(2)
¹⁶⁷ Eu		7.1(12)	¹⁷⁴ Ho	98(6)	¹⁸⁵ Lu*	0.22(7)	²⁰⁶ Pt	0.033(11)
¹⁶⁸ Eu		2.0(8)	¹⁷⁵ Ho	22(2)	¹⁸⁶ Lu*	0.15(4)	²⁰⁷ Pt	0.008(3)
¹⁶⁷ Gd		625(23)	¹⁷⁶ Ho	2.2(6)	¹⁸⁷ Lu	0.043(9)	²⁰⁸ Pt	0.0027(15)

New neutron-rich isotopes of the elements between $60 \le Z \le 69$ are produced dominantly by fission, while fragmentation plays a dominant role in the production of the isotopes of the elements above Z = 72.

superheavy and n-rich nuclei transuranium

Adamian, Antonenko, Scheid, and Volkov, NPA 627(1997)361, NPA 633(1998)409

A simple test

$$\sigma_{\rm ER} = \sigma_{\rm cap} P_{\rm CN} W_{\rm sur}$$

$$\sigma_{\rm cap}(E_{\rm c.m.}) = \frac{1}{4} \int_0^{\pi} \sin\theta_1 \, d\theta_1 \int_0^{\pi} \sigma_{\rm cap}(E_{\rm c.m.}, \theta_1, \theta_2) \sin\theta_2 \, d\theta_2.$$
$$\sigma_{\rm cap}(E_{\rm c.m.}, \theta_1, \theta_2) = \frac{\pi \hbar^2}{2\mu E_{\rm c.m.}} \sum_J (2J+1)T(E_{\rm c.m.}, \theta_1, \theta_2, J).$$

$$P_{\text{CN}}(E^*, \theta_1, \theta_2) = \exp\left(\frac{C_0}{\eta}\right) \exp[C_1 \Delta R(\theta_1, \theta_2)]$$
$$\times \exp\left(C_2 \frac{R(\theta_2) - R_{\text{side}}}{R_{\text{tip}} - R_{\text{side}}}\right) \exp(C_3 E^*)$$

 $W_{\rm sur}$ HIVAP code W. Reisdorf, Z. Phys. A 300, 227 (1981)

Comparison of the calculated ER cross sections with the experimental data for Z=113-118

Production cross sections of Z=119 and 120

The maximal production cross sections for Z=120:

${}^{50}{ m Ti} + {}^{249}{ m Cf}$	0.029 pb
${}^{54}\text{Cr} + {}^{248}\text{Cm}$	0.003 pb
$^{51}V + {}^{249}Bk$	$0.0018\mathrm{pb}$

The maximal production cross sections for Z=119:

L Zhu, WJ Xie, FS Zhang, Physics Review C 89 (2014) 024615

PHYSICAL REVIEW C 79, 024603 (2009)

Attempt to produce element 120 in the ²⁴⁴Pu + ⁵⁸Fe reaction

Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, R. N. Sagaidak, I. V. Shirokovsky, Yu. S. Tsyganov, A. A. Voinov, A. N. Mezentsev, V. G. Subbotin, A. M. Sukhov, K. Subotic, V. I. Zagrebaev, and S. N. Dmitriev *Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation*

R. A. Henderson, K. J. Moody, J. M. Kenneally, J. H. Landrum, D. A. Shaughnessy, M. A. Stoyer, N. J. Stoyer, and P. A. Wilk *Lawrence Livermore National Laboratory, Livermore, California 94551, USA* (Received 24 October 2008; published 5 February 2009)

An experiment aimed at the synthesis of isotopes of element 120 has been performed using the 244 Pu(58 Fe,xn) ${}^{302-x}$ 120 reaction. No decay chains consistent with fusion-evaporation reaction products were observed during an irradiation with a beam dose of 7.1×10^{18} 330-MeV 58 Fe projectiles. The sensitivity of the experiment corresponds to a cross section of 0.4 pb for the detection of one decay.

Further attempts to synthesize element 120 in this reaction would require an increased sensitivity of the experiment. To enhance the production of element 120, the choice of a more mass-asymmetric reaction like 248 Cm + 54 Cr (or even 249 Cf + 50 Ti) would be preferable.

superheavy and n-rich nuclei transuranium

More references (before)

- 1.Kratz, Norris and Seaborg, Mass-yield distribution in the reaction of 84Kr(605MeV) +238U, PRL33(1974)502, 156 nuclides
- 2. Otto, Fowlwe, Lee, and Seaborg, Mass yield distribution in the reaction of 136Xe(1150) +238U, PRL36(1976)135, 131 nuclides
- Schadel, Kratz, Ahrens, Bruchle, Franz, Gaggeler, Warnecke, and Wirth, Isotop distributions in the reactoin of 238U(1785)+238U, PRL41(1978)469, enhancement
- 4.Kratz, Bruchle, Folger, Gaggeler, Schadel, Summerer, and Wirth, Search for superheavy elements in damped collisions 238U(7.3MeV/u)+238U, PRC33(1986)504, cross-section limits 10pb
- 5. Shen, Albinski, Gobbi, Gralla, Hildenbrand, and Herrmann, Fission and quasifission in U-induced reaction, PRC36(1987)115, mass drift

More references (recently)

- Souliotis, Veselsky, Galanopoulos et al., Approaching neutron-rich nuclei toward the r-process path in peripheral heavy-ion collisions at 15 MeV/nucleon, PRC84 (2011)064607, 86Kr(15 MeV/u) +58,64Ni, 112,124Sn
- 2.Kratz, Loveland, and Moody, Syntheses of trans-U isotops with Z=<103 in multi-nucleon transfer reactions, NPA2015
- 3.Watanabe et al, Pathways for the production of n-rich isotopes around N=126 shell closure, 136Xe(8MeV/u) +198Pt, PRL15(2015)172503
- 4.Vogt et al, Light and heavy transfer products in 136Xe+238U multinucleon transfer reactions, PRC92(2015)024619, PRISMA+AGATA
- Barrett, Loveland, et al, The 136Xe(Ecm=450MeV) + 208Pb reaction: A test of models of multi-nucleon transfer reactions, PRC91(2015)064615, 200 P+ T-like fragments

Recent Exp by W. Loveland

The 136 Xe + 208 Pb reaction: A test of models of multi-nucleon transfer reactions

J. S. Barrett, R. Yanez, W. Loveland

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 USA

S. Zhu, A. D. Ayangeakaa, M. P. Carpenter,

J. P. Greene, R. V. F. Janssens, T. Lauritsen

Physics Division, Argonne National Laboratory, Argonne, Illinois 60439 USA

E. A. McCutchan, A. A. Sonzogni National Nuclear Data Center, Brookhaven

National Laboratory, Upton, New York, 11973 USA

C. J. Chiara^{*} and J. L. Harker Physics Division, Argonne National Laboratory,

Argonne, Illinois 60439 USA and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 USA

W. B. Walters

Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 USA

Distribution of TLFs produced in the reaction of $E_{c.m.}=450$ MeV ¹³⁶Xe with a thick ²⁰⁸Pb target.

Distribution of PLFs produced in the reaction of $E_{c.m.}=450$ MeV ¹³⁶Xe with a thick ²⁰⁸Pb target.

J. Phys. G: Nucl. Part. Phys. 42 (2015) 085102 (9pp)

Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model

Long Zhu^{1,2}, Zhao-Qing Feng³ and Feng-Shou Zhang^{1,2,4,5}

¹ The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, People's Republic of China

² Beijing Radiation Center, Beijing 100875, People's Republic of China
 ³ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China

⁴ Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, People's Republic of China

E-mail: fszhang@bnu.edu.cn

Received 15 March 2015, revised 29 April 2015 Accepted for publication 7 May 2015 Published 12 June 2015

L. Zhu et al. JPG 42 (2015)085102

$$^{136}_{54}$$
Xe + $^{208}_{82}$ Pb, 514 MeV

For target-like(Z=82) fragments,

Transfer 2, 4, and 6 protons

FIG. 3. The comparison of calculated production cross sections for primary (thin lines) and survived (thick lines) isotopes of Po (solid lines), Rn (dashed lines), and Ra (dashdotted lines) with the experimental data [23] in the reaction 136 Xe+ 208 Pb at $E_{c.m.} = 514$ MeV. The solid points correspond to the experimental cross sections for 210 Po (square), 222 Rn (triangle), and 224 Ra (circle).

Exp. Data: Kozulin et al., PRC86 (2012)044611

$$^{238}_{92}\text{U} + {}^{248}_{96}\text{Cm}, 800 \text{ MeV}$$

For target-like(Z=96) fragments, Transfer 3, 4, and 5 protons

FIG. 4. Cross sections for the formation of isotopes of Einsteinium (Z = 99) (dotted lines), Fermium (Z = 100) (solid lines), Mendelevium (Z = 101) (dashed lines), and Nobelium (Z = 102) (dash-dotted line) in the reaction ²³⁸U+²⁴⁸Cm at $E_{\rm c.m.} = 800$ MeV. The thin and thick lines are distribution of primary and final fragments, respectively. The experimental data are taken from Ref. [24].

Exp. Data: Schadel et al., PRL48 (1982)852

$$^{176}_{70}$$
Yb $+^{238}_{92}$ U

For projectile like 70+zYb106+N

Transfer

7 protons, Eu5 protons, Tb3 protons, Ho0 protons, Yb

For un know n-rich nuclei ^A₆₃Eu, A=165~168

$$^{165}{}_{63}$$
Eu, N=102, ~ μb
 $^{166}{}_{63}$ Eu, N=103, ~0.5 μb
 $^{167}{}_{63}$ Eu, N=104, ~10 pb
 $^{168}{}_{63}$ Eu, N=105, ~ pb

FIG. 5. (a) Production cross sections of isotopes of Yb in the transfer reaction 176 Yb+ 238 U at $E_{c.m.} = 570$ (dash-dotted line), 600 (solid line), 650 (dashed line), and 690 MeV (dotted line). (b) Cross sections for the formation of isotopes of elements Ytterbium (solid line), Holmium (dashed line), Terbium (dotted line), and Europium (dash-dotted line) in the reaction 176 Yb+ 238 U at $E_{c.m.} = 600$ MeV. The circles denote the unknown neutron-rich nuclei.

IOP Publishing Top Cited Author Award (China) Nuclear Physics (2015-2017)

http://ioppublishing.org/china-top-cited-author-award/top-articles-physics/

OUTLINE

- 1. Introduction
- 2. Models for calculation of production cross sections of exotic nuclei
 - 2.1 The Improved Quantum Molecular
 - **Dynamics** Model
 - 2.2 A combination of the Grazing Model and the Dinuclear System (DNS) Model
- 3. RNB induced MNT
- 4. Summary

2.1 The Improved Quantum Molecular Dynamics Model and MNT

136 54 + 208 82 fast-->K, slow-->J, previous-->U, next-->I, right-->D, left-->A, up-->W, down-->S, reverse-->Z, enlarge-->T, shrink-->Y, Rz-->R & F, Ry-->Q & E, Rx-->C & 448.20000 VLab= 3.22cm/ns Vcm= 1.28cm/ns E = (Rx, Ry, Rz)=(0.00000 Χ2 0. b = 0. 0.) Blue and Green are neutrons! irun= Ncoll= Nblock=

 $136 \overline{Xe^{+208}Pb}$

Made by Cheng Li E-mail: imqmd@qq.com Beijing Normal University

Density distribution of ¹³⁶Xe+²⁰⁸Pb at Ec.m.=450 MeV

Li, Zhang, Li, Zhu, Tian, Wang, and Zhang, PRC 93, 014618 (2016)

Energy dissipation between the projectile and target

Mass number

Comparison with exp. data

Li, Zhang, Li, Zhu, Tian, Wang, and Zhang, PRC 93, 014618 (2016)

Isotope distributions for ¹³⁶Xe+²⁰⁸Pb at Ec.m. = 450 MeV

Li, Zhang, Li, Zhu, Tian, Wang, and Zhang, PRC 93, 014618 (2016)

OUTLINE

- 1. Introduction
- 2. Models for calculation of production cross sections of exotic nuclei
 - (1) The Improved Quantum Molecular
 - **Dynamics Model**
 - (2) A combination of the Grazing Model and the Dinuclear System (DNS) Model
- 3. RNB induced MNT
- 4. Summary

2.2 A combination of the Grazing Model and the Dinuclear System (DNS) Model

¹³⁶Xe+²⁰⁸Pb, Ecm=450 MeV

Data: Barrett et al, PRC91(2015)06461

Results of GRAZING model is good for target-like products

Each model has Its limitations for the results.

Comparison of GRAZING and DNS: formula

GRAZING: > deals with the nuclei scattered with probability (1-Pcap)
> quantum transition from one nuclei to another without capture

DNS: > deals with the nuclei captured with probability Pcap
>transfer or dissipation due to transportation after capture

$$\begin{split} \sigma^{tr}_{Grazing}(Z,A,E) &= \frac{\pi\hbar^2}{2\mu E} \sum_J (2J+1)(1-P_{cap}(E,J)) P^{Grazing}_{trans}(Z,A,E) \\ \sigma^{tr}_{DNS}(Z,A,E) &= \frac{\pi\hbar^2}{2\mu E} \sum_J (2J+1) P_{cap}(E,J) P^{DNS}_{trans}(Z,A,E) \end{split}$$

Physical mechanisms described by these two models are mutually complementary depending on whether capture happens.

Combination

To be consistent with GRAZING model and DNS model:

□ The same heavy-ion potential with none free parameters

$$U_{aA} = -16\pi\gamma a \frac{R_a R_A}{R_a + R_A} \frac{1}{1 + \exp[(r - R_a - R_A)/a]}$$
(4)

where

$$\frac{1}{a} = 1.17[1 + 0.53(A_a^{-1/3} + A_A^{-1/3})]$$
(5)

$$R_i = 1.2A_i^{1/3} - 0.09 \tag{6}$$

$$\gamma = 0.95(1 - 1.8 \frac{(N_a - Z_a)(N_A - Z_A)}{A_a A_A}).$$
 (7)

Extract capture probability from GRAZING model into DNS model

$$P_c(E,l) = \int P(E_r)T_l(E-Er)dE_r.$$

Extract grazing angular momentum from GRAZING model into DNS model to predict interaction time Based on *Pcap* and *b: transfer reactions can be* clearly clarified into four areas by these two models.

¹³⁶Xe+²⁰⁸Pb Ecm=450 MeV

Fröbrich98, et al, Phys. Rep. 292, 131 (1998)

Wen, Li, Zhu, Lin, and Zhang JPG 44(2017)115101

¹³⁶Xe+²⁰⁸Pb, Ecm=450 MeV

Combination of results by GRAZING+DNS is better

Wen, Li, Zhu, Lin, and Zhang JPG 44(2017)115101

⁶⁴Ni+²³⁸U, Ecm=307 MeV

Contrast of results by these two models is more obvious

⁶⁴Ni+²³⁸U, Ecm=307 MeV

Cross section (mb)

Mass number

Results are also significantly improved by GRAZING+DNS

J. Phys. G: Nucl. Part. Phys. 44 (2017) 115101 (12pp)

https://doi.org/10.1088/1361-6471/aa8b07

Mechanism of multinucleon transfer reaction based on the GRAZING model and DNS model

Pei-wei Wen^{1,2}, Cheng Li^{1,2}, Long Zhu³, Cheng-jian Lin⁴ and Feng-shou Zhang^{1,2,5}

¹ The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, People's Republic of China
² Beijing Radiation Center, Beijing 100875, People's Republic of China
³ Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, People's Republic of China
⁴ China Institute of Atomic Energy, Beijing 102413, People's Republic of China
⁵ Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, People's Republic of China

E-mail: fszhang@bnu.edu.cn

Wen, Li, Zhu, Lin, and Zhang, JPG 44(2017)115101

OUTLINE

- 1. Introduction
- 2. Models for calculation of production cross
 sections of exotic nuclei
 (1) The large of Query Market and Comparison (1) The large of Comparison (1) and (1) an
 - (1) The Improved Quantum Molecular
 - **Dynamics** Model
 - (2) A combination of the Grazing Model and the Dinuclear System (DNS) Model
- 3. RNB induced MNT
- 4. Summary

3. Transfer Reaction induced by RNB

¹³⁶Xe+¹⁹⁸Pt

$$E_{c.m} = 643 \text{ MeV}$$

Date: Y. X. Watanabe et al. PRL 115, 172503 (2015).

Cal: Zhu, Su, Xie, and Zhang PLB 707, 423 (2017).

Cal: Zhu, Su, Xie, and Zhang PLB 707, 423 (2017).

It is favorable to produce n-rich nuclei with charge number less than targets.

$$E_{c.m}$$
=450 MeV

Data: J. S. Barrett et al., PRC 91, 064615 (2015).

The circles denote the unknown nrich isotopes.

$$E_{c.m.} = 1.1V_{int}$$

Cross sections of nuclei with neutron closed shell N = 126 for reactions 136 Xe, 139 Xe, 144 Xe, and 132 Sn with 208 Pb, Ec.m. = 1.1V_{CN}. Open symbols denote unknown isotopes (198 Ta).

Zhu, Su, Xie, and Zhang, PLB 707, 423 (2017)

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Theoretical study on production of heavy neutron-rich isotopes around the N = 126 shell closure in radioactive beam induced transfer reactions

PHYSICS LETTERS B

Long Zhu^{a,*}, Jun Su^a, Wen-Jie Xie^{b,c}, Feng-Shou Zhang^{d,e,f}

^a Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China

^b Department of Physics, Yuncheng University, Yuncheng 044000, China

^c Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

^d The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology,

Beijing Normal University, Beijing 100875, China

^e Beijing Radiation Center, Beijing 100875, China

^f Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China

Zhu, Su, Xie, and Zhang, PLB767(2017)417-442

Fig. 2. The observed fragment yields for the $E_{c.m.} = 619$ MeV 204 Hg + 198 Pt reaction compared to the predictions of the DNS model.

Fig. 5. The observed fragment yields (red circles) for the $E_{c.m.} = 619$ MeV 204 Hg + 198 Pt reaction compared to the predictions (blue circles and line) of the ImQMD model. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Comparision with experimental work in ANL

Physics Letters B 771 (2017) 119-124

Modeling multi-nucleon transfer in symmetric collisions of massive nuclei

T. Welsh^a, W. Loveland^{a,*}, R. Yanez^a, J.S. Barrett^a, E.A. McCutchan^b, A.A. Sonzogni^b, T. Johnson^b, S. Zhu^c, J.P. Greene^c, A.D. Ayangeakaa^c, M.P. Carpenter^c, T. Lauritsen^c, J.L. Harker^d, W.B. Walters^d, B.M.S. Amro^e, P. Copp^e

^a Dept. of Chemistry, Oregon State University, Corvallis, OR 97331, USA

^b National Data Center, Brookhaven National Laboratory, Upton, NY 11973, USA

^c Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

^d Dept. of Chemistry and Biochemistry, Univ. of Maryland, College Park, MD 20742, USA

^e Dept. of Physics, UMass Lowell, Lowell, MA 01854, USA

Acknowledgements

We thank Prof. F. S. Zhang and co-workers for making the DNS and ImQMD calculations cited in this paper and R.V. F. Janssens for helpful comments. This work was supported in part by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the US Department of Energy under Grant DE-SC0014380 (OSU), Grant Number

Isotope production cross sections for ¹⁹⁹Pt, ²⁰³Pt, and ²⁰⁸Pt ¹³⁶Xe +¹⁹⁸Pt, 7.98 MeV/u

Li, Zhu, Wen, Zhang, Phys. Lett. B 776 (2018) 278.

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Production mechanism of new neutron-rich heavy nuclei in the 136 Xe + 198 Pt reaction

Cheng Li^{a,b}, Peiwei Wen^{a,b}, Jingjing Li^{a,b}, Gen Zhang^{a,b}, Bing Li^{a,b}, Xinxin Xu^{a,b}, Zhong Liu^c, Shaofei Zhu^d, Feng-Shou Zhang^{a,b,e,*}

^a Beijing Radiation Center, Beijing 100875, China

^b The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal

University, Beijing 100875, China

^c Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

^d Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA

e Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China

ARTICLE INFO

ABSTRACT

Article history:

Received 17 July 2017 Received in revised form 23 November 2017 Accepted 25 November 2017 Available online 29 November 2017 Editor: J.-P. Blaizot The multinucleon transfer reaction of 136 Xe + 198 Pt at $E_{lab} = 7.98$ MeV/nucleon is investigated by using the improved quantum molecular dynamics model. The quasielastic, deep-inelastic, and quasifission collision mechanisms are studied via analyzing the angular distributions of fragments and the energy dissipation processes during the collisions. The measured isotope production cross sections of projectilelike fragments are reasonably well reproduced by the calculation of the ImQMD model together with the GEMINI code. The isotope production cross sections for the target-like fragments and double differential cross sections of 199 Pt, 203 Pt, and 208 Pt are calculated. It is shown that about 50 new neutron-rich heavy nuclei can be produced via deep-inelastic collision mechanism, where the production cross sections are from 10^{-3} to 10^{-6} mb. The corresponding emission angle and the kinetic energy for these new neutronrich nuclei locate at 40° - 60° and 100-200 MeV, respectively.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

Production of n-rich ²⁰⁹⁻²¹²Pt isotopes

PHYSICAL REVIEW C 98, 014613 (2018)

Production of neutron-rich ^{209–212}Pt isotopes based on a dinuclear system model

Gen Zhang,^{1,2} Cheng Li,² Pei-Wei Wen,³ Jing-Jing Li,^{1,2} Xin-Xin Xu,^{1,2} Bing Li,^{1,2} Zhong Liu,⁴ and Feng-Shou Zhang^{1,2,5,*} ¹The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China ²Beijing Radiation Center, Beijing 100875, China ³China Institute of Atomic Energy, Beijing 102413, China ⁴Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ⁵Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China

(Received 8 May 2018; published 23 July 2018)

The production cross sections of new neutron-rich nuclei $^{209-212}$ Pt are investigated with multinucleon transfer reactions by the dinuclear system model. It is found that the 133 Sn + 204 Hg and 145 Xe + 208 Pb systems are advantageous to produce the neutron-rich nuclei, in which the production cross sections are much higher than those produced in projectile fragmentation reactions. The optimal incident energies for these two systems are about 1.18 and 1.40 times the Coulomb barrier, respectively. The highest cross sections of unknown isotopes $^{209-212}$ Pt in the 145 Xe + 208 Pb reaction are 2.7 nb, 0.4 nb, 8.2 pb, and 2.7 pb, respectively, and those for the 133 Sn + 204 Hg reaction are 1.7 nb, 0.4 nb, 23.3 pb, and 4.8 pb, respectively.

DOI: 10.1103/PhysRevC.98.014613

FIG. 4. Final isotopic production cross sections of Pt in ¹⁴⁵Xe + ²⁰⁸Pb (a) and ¹³³Sn + ²⁰⁴Hg (b) at $E_{c.m.} = 1.10V_{C}$, $1.14V_{C}$, and $1.18V_{C}$. The solid circles are experimental data of 1 GeV/A ²³⁸U + ³Be from Ref. [6]. The blank circle, square, and triangle symbols denote the unknown neutron-rich isotopes produced at $E_{c.m.} = 1.10V_{C}$, $1.14V_{C}$, $1.18V_{C}$, respectively. The production cross sections of the

TABLE I. A brief summary of the neutron-rich Pt isotopes.

Reaction	$E_{\rm lab}$	Method	Isotope	Ref.
¹⁹⁶ Pt(² H, ¹ H) ¹⁹⁷ Pt	5 MeV	LP	¹⁹⁷ Pt	[7]
198 Pt $(n, \gamma)^{199}$ Pt	0–1 keV	NC	199Pt	[8]
199 Pt $(n, \gamma)^{200}$ Pt	-	NC	²⁰⁰ Pt	[9]
204 Hg(n, α) ²⁰¹ Pt	1 MeV	LP	²⁰¹ Pt	[10]
204 Hg(n, 2pn) 202 Pt	21 MeV	LP	²⁰² Pt	[11]
208 Pb + 9 Be	1 GeV/nucleon	PF	^{203–204} Pt	[12]
²³⁸ U + ⁹ Be	1 GeV/nucleon	PF	²⁰⁵ Pt	[4]
$^{238}\text{U} + ^{9}\text{Be}$	1 GeV/nucleon	PF	^{206–208} Pt	[6]

TABLE II. The production cross sections of ^{209–212}Pt isotopes. ΔU^{Xe+Pb} and ΔU^{Sn+Hg} are the ΔU values of ¹⁴⁵Xe + ²⁰⁸Pb and ¹³³Sn + ²⁰⁴Hg reactions, respectively. σ^{Xe+Pb} and σ^{Sn+Hg} are the production cross sections of these two systems, respectively.

Isotope	$\Delta U^{\mathrm{Xe+Pb}}$	$\Delta U^{ m Sn+Hg}$	$E_{\rm c.m.}/V_{\rm C}$	σ^{Xe+Pb} (pb)	$\sigma^{ m Sn+Hg}~(m pb)$
²⁰⁹ Pt	7.62 MeV	16.42 MeV	1.10	123.1	813.4
			1.14	657.1	1471
			1.18	1066.0	1690
			1.30	2684.8	779.9
			1.40	2641.7	501.8
			1.50	965.8	165.1
²¹⁰ Pt	10.73 MeV	17.37 MeV	1.10	14.2	131.4
			1.14	31.1	254.7
			1.18	227.6	389.5
			1.30	113.3	176.5
			1.40	418.2	97.2
			1.50	52.0	77.9
²¹¹ Pt	21.20 MeV	20.14 MeV	1.10		2.6
			1.14		17.7
			1.18	1.0	23.3
			1.30	5.1	14.3
			1.40	7.6	7.7
			1.50	8.2	4.9
²¹² Pt	21.47 MeV	23.85 MeV	1.10		
			1.14		2.1
			1.18		4.8
			1.30	2.2	3.4
			1.40	2.7	2.1
			1.50	1.9	

Production of n-rich ^{280-283,290-292}Fl isotopes

PHYSICAL REVIEW C 98, 014626 (2018)

Theoretical study on production of unknown neutron-deficient ^{280–283}Fl and neutron-rich ^{290–292}Fl isotopes by fusion reactions

Jingjing Li,^{1,2} Cheng Li,^{1,2} Gen Zhang,^{1,2} Bing Li,^{1,2} Xinxin Xu,^{1,2} Zhong Liu,³ Yu. S. Tsyganov,⁴ and Feng-Shou Zhang^{1,2,5,*} ¹The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China ²Beijing Radiation Center, Beijing 100875, China ³Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

⁴Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation ⁵Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China

(Received 9 February 2018; revised manuscript received 20 June 2018; published 31 July 2018)

We attempt to calculate the production cross sections of unknown $^{280-283}$ Fl and $^{290-292}$ Fl isotopes by using hot fusion reaction mechanism within the dinuclear system model. The production of unknown neutron-deficient Fl isotopes ($^{280-283}$ Fl) is studied in the reactions 44 Ca + 242 Pu and 36 S + 249 Cf with the maximum evaporation residue cross sections values 0.91 pb, 6.17 pb, 36.16 pb, and 2.02 pb, respectively. The use of neutron-rich radioactive beams 44 Ar and 46 Ar may help us produce new neutron-rich Fl isotopes via fusion reaction mechanism only if an extremely high beam intensity were to be achieved in the future. The maximum production cross sections of unknown neutron-rich isotopes ($^{290-292}$ Fl) in the reactions 46 Ar + 248 Cm and 46 Ar + 250 Cm are predicted to be 4.06 pb, 8.55 pb, and 3.35 pb, respectively. At present, reaction with radioactive ion beams is not a promising method to produce neutron-rich superheavy nuclei and other reaction mechanisms such as transfer reaction need to be developed.

DOI: 10.1103/PhysRevC.98.014626

Production of n-rich ^{280-283,290-292}Fl isotopes

FIG. 5. Superheavy nuclei (Z > 112) region at the top-right part of the nuclear map. The filled squares and open squares denote the known nuclei and the predicted ones, respectively. Yellow and olive indicate the α decay and SF, respectively. The optimal reaction systems and the corresponding production cross sections are signed in the graph.

Production of n-rich ²⁶¹⁻²⁶³No isotopes

PHYSICAL REVIEW C 95, 054612 (2017)

Production cross sections of neutron-rich ^{261–263}No isotopes

Jingjing Li,^{1,2} Cheng Li,^{1,2} Gen Zhang,^{1,2} Long Zhu,³ Zhong Liu,⁴ and Feng-Shou Zhang^{1,2,5,*} ¹The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China ²Beijing Radiation Center, Beijing 100875, China ³Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China ⁴Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China ⁵Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China (Received 28 February 2017; published 15 May 2017)

The fusion excitation functions of ${}^{249-263}$ No are studied by using various reaction systems based on the dinuclear system model. The neutron-rich radioactive beam 22 O is used to produce neutron-rich nobelium isotopes, and the new neutron-rich isotopes ${}^{261-263}$ No are synthesized by 242 Pu(22 O,3*n*) 261 No, 244 Pu(22 O,4*n*) 262 No, and 244 Pu(22 O,3*n*) 263 No reactions, respectively. The corresponding maximum evaporation residue cross sections are 0.628, 4.649, and 1.638 μ b, respectively. The effects of the three processes (capture, fusion, and survival) in the complete fusion reaction are also analyzed. From investigation, a neutron-rich radioactive beam as the projectile and neutron-rich actinide as the target could be a new selection of the projectile-target combination to produce a neutron-rich heavy nuclide.

DOI: 10.1103/PhysRevC.95.054612

LI, LI, ZHANG, ZHU, LIU, AND ZHANG

PHYSICAL REVIEW C 95, 054612 (2017)

TABLE I.	A brief	summary	of the	No	isotopes.
----------	---------	---------	--------	----	-----------

Reaction	$E_{\rm lab}({\rm MeV})$	Method	Channel	Isotope	References
$^{48}Ca + {}^{206}Pb$	213.5-242.5	FE	4 <i>n</i>	²⁵⁰ No	[11]
$^{48}Ca + {}^{204}Pb$	213.5-242.5	FE	2n	²⁵⁰ No	[11]
${}^{12}C + {}^{244}Cm$	78 - 90	FE	5 <i>n</i>	²⁵¹ No	[12]
$^{18}O + ^{239}Pu$	96	FE	5 <i>n</i>	²⁵² No	[13]
$^{16}O + {}^{242}Pu$	102	FE	5 <i>n</i>	²⁵³ No	[13]
22 Ne + 238 U	_	FE	6 <i>n</i>	²⁵⁴ No	[9]
$^{15}N + ^{243}Am$	82-84	FE	4n	²⁵⁴ No	[9,10]
22 Ne + 238 U	177	FE	5 <i>n</i>	²⁵⁵ No	[14]
22 Ne + 238 U	110-120	FE	4 <i>n</i>	²⁵⁶ No	[15]
$^{13}C + ^{248}Cm$	63-68	FE	4 <i>n</i>	²⁵⁷ No	[12]
$^{13}C + ^{248}Cm$	67.6	FE	3n	²⁵⁸ No	[16]
$^{18}O + ^{248}Cm$	88-106	FE	$\alpha 3n$	²⁵⁹ No	[17]
$^{18}O + ^{254}Es$	99	MNT	-	²⁶⁰ No	[18]

FIG. 5. The excitation functions in the *xn*-evaporation channels (x = 1-4) for the ⁴⁸Ca + ²⁰⁸Pb reaction. The solid, dashed, dotted, and dash-dotted lines indicate calculated results of the 1*n*, 2*n*, 3*n*, and 4*n* channels, respectively. The circles, squares, triangles, and pentagon represent the available experimental data [11] for the 1*n*, 2*n*, 3*n*, and 4*n* channels, respectively.

TABLE II. The production cross sections of $^{249-263}$ No isotopes in FE reactions. The mass number and half-lives of these isotopes are tabulated in columns 1 and 2. The corresponding reactions, the incident energy in the laboratory frame E_{lab} , and the excitation energy E^* are listed in columns 3–5. The experimental values of the evaporation residue cross sections σ_{exp} in column 6 are taken from Refs. [11,51]. The calculated results are shown in the last column. For the reactions without experimental data, the calculated cross sections are the value.

Mass number	Half-life	Reaction	E _{lab} (MeV)	E^* (MeV)	σ_{\exp} (nb)	σ _{cal} (nb)
249	_	228Th(26Mg,5n)	164.9	74.0	_	1.2
250	$4.2^{+12}_{-9} \ \mu s$	204Pb(48Ca, 2n)	216.7	23.2	$13.2^{+10.1}_{-67}$	17.2
		²⁰⁶ Pb(⁴⁸ Ca, 4n)	242.4	43.9	$0.26_{-0.13}^{+0.19}$	2.0
		²²⁸ Th(²⁶ Mg, 4n)	140.4	52.0	_	23.9
251	$0.8 \pm 1 \text{ s}$	206Pb(48Ca, 3n)	226.2	30.7	30+9	44.2
		244Cm(12C,5n)	83.0	49.7	90	8.3
252	$2.47 \pm 2 s$	²⁰⁶ Pb(⁴⁸ Ca, 2n)	217.1	23.3	515+80	168.4
		230Th(26Mg, 4n)	135.8	48.8	_	169.6
		244Cm(12C,4n)	73.3	40.6	250	490.7
253	$1.62 \pm 15 \min$	²⁰⁶ Pb(⁴⁸ Ca, 1n)	217.4	23.6	58+16	32.9
		207Pb(48Ca, 2n)	216.7	22.4	1310+430	2343.7
		230Th(26Mg, 3n)	133.6	47.0	_	172.4
		244Cm(13C,4n)	72.8	40.5	300	219.6
		246Cm(12C,5n)	83.0	50.3	240	49.6
254	$51 \pm 10 \text{ s}$	²⁰⁸ Pb(⁴⁸ Ca, 2n)	216.7	22.3	2050+460	1604.7
		244Cm(13C,3n)	69.8	37.7	120	445.7
		246Cm(12C,4n)	72.0	39.9	1000	3510.2
		246Cm(13C,5n)	78.5	46.6	560	169.0
255	3.52 ± 21 min	242Pu(18O,5n)	106.8	58.0	_	88.3
		246Cm(13C,4n)	69.5	38.0	620	444.6
		248Cm(12C,5n)	77.8	46.3	580	27.2
256	$2.91 \pm 5 s$	242Pu(18O,4n)	93.9	46.0	_	1212.0
		246Cm(13C, 3n)	67.5	36.1	70	62.3
		248Cm(12C,4n)	71.2	39.9	1000	1686.5
		248Cm(13C,5n)	74.8	43.5	660	67.2
257	25 ± 3 s	²⁴² Pu(¹⁸ O, 3n)	91.8	44.0	_	586.2
		²⁴⁴ Pu(¹⁸ O,5n)	105.8	58.0	_	100.0
		248Cm(12C,3n)	69.2	38.0	160	1884.8
		248Cm(13C,4n)	70.5	39.4	1100	613.0
258	$1.2 \pm 2 s$	244Pu(18O,4n)	95.0	48.0	_	706.6
		248Cm(13C, 3n)	71.1	40.0	_	3526.1
259	$58 \pm 5 \text{ ms}$	242Pu(22O,5n)	106.9	58.0	_	105.7
-		244Pu(18O,3n)	90.7	44.0	_	487.1
260	$106 \pm 8 \text{ ms}$	²⁴² Pu(²² O,4n)	93.8	46.0	_	1277.6
261	_	²⁴² Pu(²² O, 3n)	91.6	44.0	_	628.1
		244Pu(22O,5n)	100.8	52.0	_	346.9

Recent publications PRC89(2014)024615 PRC90(2014)014612 JPG42(2015)085102 PRC93(2016)014618 PRC93(2016)064610

Effects of the shell corrections on the alphadecay of the ²⁸⁰⁻³⁰⁵Fl isotopes

PHYSICAL REVIEW C 98, 034312 (2018)

Effect of shell corrections on the α -decay properties of ^{280–305}Fl isotopes

Zhishuai Ge,^{1,2} Cheng Li,^{1,2} Jingjing Li,^{1,2} Gen Zhang,^{1,2} Bing Li,^{1,2} Xinxin Xu,^{1,2} Cheikh A. T. Sokhna,^{1,2} Xiaojun Bao,³ Hongfei Zhang,⁴ Yu. S. Tsyganov,⁵ and Feng-Shou Zhang^{1,2,6,*}

¹Key Laboratory of Beam Technology of Ministry of Education, Beijing Radiation Center, Beijing 100875, China

²College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China

³College of Physics and Information Science, Hunan Normal University, Changsha 410006, China

⁴School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China

⁵Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, RU-141980 Dubna, Russian Federation ⁶Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China

(Received 29 July 2018; published 17 September 2018)

The α -decay half-lives of ^{285–289}Fl isotopes and their decay chains are investigated by employing the generalized liquid-drop model (GLDM), the unified fission model, the Royer's analytical formula, and the universal decay law. For the GLDM, we take into account the shell correction. The agreement between the experimental data and the calculations indicates that all the methods we used are successful to reproduce α -decay half-lives of ^{285–289}Fl. For the unknown nuclei, the α -decay half-lives have been predicted by inputting α -decay energies (Q_{α}) extracted from the finite-range droplet model and the updated Weizsäcker-Skyrme-4 (WS4) model. It is found that the shell correction would enlarge the calculated α -decay half-lives in the region from ²⁹²Fl to ²⁹⁸Fl, where the shell effects are evident. We confirm that N = 184 is the neutron magic number and N = 178 is the submagic number by analyzing the α -decay half-lives and the shell correction energies. The competition between α -decay and spontaneous fission is discussed in detail and the decay modes of ^{280–283}Fl and ^{290–305}Fl have been predicted. Our calculations are in good agreement with the experiments for the decay properties of ^{284–289}Fl. We also predict ^{284,286}Fl with both α -decay and spontaneous fission. The ^{280–283,290–295,297}Fl isotopes are α decay, ^{300–305}Fl undergo spontaneous fission, and ^{296,298,299}Fl would have both α -decay and spontaneous fission. We also predict the decay chains of ^{280–283,290,291}Fl.

OUTLINE

- 1. Introduction
- 2. Models for calculation of production cross sections of exotic nuclei
 (1) The Improved Overture Molecular
 - (1) The Improved Quantum Molecular
 - **Dynamics** Model
 - (2) A combination of the Grazing Model and the Dinuclear System (DNS) Model
- 3. RNB induced MNT
- 4. Summary

1. GRAZING model is suitable for estimating the isotope production cross sections only for Z = -1 to +2, (ANL data, talk by W. Loveland, Shaofei Zhu).

2. The ImQMD calculations give reasonable predictions of the isotope production cross sections for Z = -3 to 0.

3. With a combination of GRAZING and DNS model, Nuclear reactions can be clearly clarified, and Description of transfer reaction cross sections can be clearly understood. MNT=Grazing + DIC.

4. The beam ¹⁴⁴ Xe shows great advantages for producing unknown neutron-rich nuclei around the N = 126 shell closure.

5. HIAF and Beijing ISOL provide good opportunities.

Thank you for your attention !

Happy Birthday! Professor Arima

